Bayesian adaptive nonparametric M-regression

نویسنده

  • Colin Chen
چکیده

Nonparametric regression has been popularly used in curve fitting, signal denosing, and image processing. In such applications, the underlying functions (or signals) may vary irregularly, and it is very common that data are contaminated with outliers. Adaptive and robust techniques are needed to extract clean and accurate information. In this paper, we develop adaptive nonparametric M-regression with a Bayesian approach. This general approach fits M-regression using piecewise polynomial functions with an unknown number of knots at unknown locations, all treated as parameters to be inferred through Reversible Jump Markov Chain Monte Carlo (RJMCMC) of Green (1995, [9]). The Bayesian solution presented in this paper with computational details can be considered as an approximation to the general optimal solution for M-regression with free knots as described in Stone (2005, [22]). Numerical results show that the Bayesian approach performs well in various cases, especially with discontinuous underlying functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian mixture of splines for spatially adaptive nonparametric regression

A Bayesian approach is presented for spatially adaptive nonparametric regression where the regression function is modelled as a mixture of splines. Each component spline in the mixture has associated with it a smoothing parameter which is defined over a local region of the covariate space. These local regions overlap such that individual data points may lie simultaneously in multiple regions. C...

متن کامل

Bayesian Nonparametric Models

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional parameter space. The parameter space is typically chosen as the set of all possible solutions for a given learning problem. For example, in a regression problem the parameter space can be the set of continuous functions, and in a density estimation problem the space can consist of all densities. A Bayesian nonparametr...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

Adaptive Bayesian Procedures Using Random Series Priors

We consider a general class of prior distributions for nonparametric Bayesian estimation which uses finite random series with a random number of terms. A prior is constructed through distributions on the number of basis functions and the associated coefficients. We derive a general result on adaptive posterior contraction rates for all smoothness levels of the target function in the true model ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009